

HSBRA8E1F144 HSBRA8M1F144

取扱説明書

ルネサス エレクトロニクス社 RA8E1/RA8M1(QFP-144ピン)搭載 HSB シリーズマイコンボード

-本書を必ずよく読み、ご理解された上でご利用ください

一目 次一

汪惠事埧	
安全上のご注意	2
特徴	
概要	5
製品内容	5
1. 仕様	6
1.1. 仕様概要	6
1.2. ボード配置図	8
1.3. ボード配置図(ジャンパ)	9
1.4. ブロック図	10
2. 詳細	11
2.1. 電源(J10)	11
2.2. 信号インタフェース	13
2.2.1. 拡張 I/O インタフェース(J1~J3)	14
2.2.1. エミュレータインタフェース(J4)	17
2.2.2. 20P エミュレータインタフェース(J5)[オプション]	18
2.2.3. USB-FS インタフェース(J6, J7)	20
2.2.4. CAN-FD0 インタフェース(J8)	22
2.2.5. CAN-FD1 インタフェース(J9)	23
2.3. 動作モード設定ジャンパ	24
2.4. ユーザインタフェース	28
2.4.1. リセットスイッチ(SW1)	28
2.4.2. 評価用スイッチ(SW2)	28
2.4.3. 電源 LED(LED1)	28
2.4.4. 評価用 LED(LED4)	29
2.5. 搭載クロック	30
2.6. 実装部品	32
2.6.1. 電池ホルダー(B1)	32
2.7. AVCC0, AVSS0, VREF 接続	33
3. 付録	34
3.1. ボード寸法図	34
3.2. 初期設定	35
取扱説明書改定記録	36
お問合せ窓口	36

注意事項

本書を必ずよく読み、ご理解された上でご利用ください

【ご利用にあたって】

- 1. 本製品をご利用になる前には必ず取扱説明書をよく読んで下さい。また、本書は必ず保管し、使用上不明な点がある場合は再読し、よく理解して使用して下さい。
- 2. 本書は株式会社北斗電子製マイコンボードの使用方法について説明するものであり、ユーザシステムは対象ではありません。
- 3. 本書及び製品は著作権及び工業所有権によって保護されており、全ての権利は弊社に帰属します。本書の無断複写・複製・転載はできません。
- 4. 弊社のマイコンボードの仕様は全て使用しているマイコンの仕様に準じております。マイコンの仕様に関しましては 製造元にお問い合わせ下さい。弊社製品のデザイン・機能・仕様は性能や安全性の向上を目的に、予告無しに変更 することがあります。また価格を変更する場合や本書の図は実物と異なる場合もありますので、御了承下さい。
- 5. 本製品のご使用にあたっては、十分に評価の上ご使用下さい。
- 6. 未実装の部品に関してはサポート対象外です。お客様の責任においてご使用下さい。

【限定保証】

- 1. 弊社は本製品が頒布されているご利用条件に従って製造されたもので、本書に記載された動作を保証致します。
- 2. 本製品の保証期間は購入戴いた日から1年間です。

【保証規定】

保証期間内でも次のような場合は保証対象外となり有料修理となります

- 1. 火災・地震・第三者による行為その他の事故により本製品に不具合が生じた場合
- 2. お客様の故意・過失・誤用・異常な条件でのご利用で本製品に不具合が生じた場合
- 3. 本製品及び付属品のご利用方法に起因した損害が発生した場合
- 4. お客様によって本製品及び付属品へ改造・修理がなされた場合

【免責事項】

弊社は特定の目的・用途に関する保証や特許権侵害に対する保証等、本保証条件以外のものは明示・黙示に拘わらず 一切の保証は致し兼ねます。また、直接的・間接的損害金もしくは欠陥製品や製品の使用方法に起因する損失金・費用 には一切責任を負いません。損害の発生についてあらかじめ知らされていた場合でも保証は致し兼ねます。

ただし、明示的に保証責任または担保責任を負う場合でも、その理由のいかんを問わず、累積的な損害賠償責任は、弊社が受領した対価を上限とします。本製品は「現状」で販売されているものであり、使用に際してはお客様がその結果に一切の責任を負うものとします。弊社は使用または使用不能から生ずる損害に関して一切責任を負いません。

保証は最初の購入者であるお客様ご本人にのみ適用され、お客様が転売された第三者には適用されません。よって転売による第三者またはその為になすお客様からのいかなる請求についても責任を負いません。

本製品を使った二次製品の保証は致し兼ねます。

安全上のご注意

製品を安全にお使いいただくための項目を次のように記載しています。絵表示の意味をよく理解した上でお読み下さい。

表記の意味

取扱を誤った場合、人が死亡または重傷を負う危険が切迫して生じる可能性が ある事が想定される

取扱を誤った場合、人が軽傷を負う可能性又は、物的損害のみを引き起こすが可能性がある事が想定される

絵記号の意味

一般指示

使用者に対して指示に基づく行為を 強制するものを示します

一般禁止

一般的な禁止事項を示します

電源プラグを抜く

使用者に対して電源プラグをコンセントから抜くように指示します

一般注意

一般的な注意を示しています

⚠警告

以下の警告に反する操作をされた場合、本製品及びユーザシステムの破壊・ 発煙・発火の危険があります。マイコン内蔵プログラムを破壊する場合もあります。

- 1. 本製品及びユーザシステムに電源が入ったままケーブルの抜き差しを行わない でください。
- 2. 本製品及びユーザシステムに電源が入ったままで、ユーザシステム上に実装されたマイコンまたはIC等の抜き差しを行わないでください。
- 3. 本製品及びユーザシステムは規定の電圧範囲でご利用ください。
- 4. 本製品及びユーザシステムは、コネクタのピン番号及びユーザシステム上のマイコンとの接続を確認の上正しく扱ってください。

発煙・異音・異臭にお気付きの際はすぐに使用を中止してください。

電源がある場合は電源を切って、コンセントから電源プラグを抜いてください。そのままご使用すると火災や感電の原因になります。

⚠注意

以下のことをされると故障の原因となる場合があります。

- 1. 静電気が流れ、部品が破壊される恐れがありますので、ボード製品のコネクタ部分や部品面には直接手を触れないでください。
- 2. 次の様な場所での使用、保管をしないでください。

ホコリが多い場所、長時間直射日光があたる場所、不安定な場所、 衝撃や振動が加わる場所、落下の可能性がある場所、水分や湿気の多い 場所、磁気を発するものの近く

- 3. 落としたり、衝撃を与えたり、重いものを乗せないでください。
- 4. 製品の上に水などの液体や、クリップなどの金属を置かないでください。
- 5. 製品の傍で飲食や喫煙をしないでください。

ボード製品では、裏面にハンダ付けの跡があり、尖っている場合があります。

取り付け、取り外しの際は製品の両端を持ってください。裏面のハンダ付け跡で、誤って手など怪我をする場合があります。

CD メディア、フロッピーディスク付属の製品では、故障に備えてバックアップ (複製)をお取りください。

製品をご使用中にデータなどが消失した場合、データなどの保証は一切致しかねます。

アクセスランプがある製品では、アクセスランプが点灯中に電源を切ったり、パソコンをリセットをしないでください。

製品の故障や、データ消失の原因となります。

本製品は、医療、航空宇宙、原子力、輸送などの人命に関わる機器やシステム及び高度な信頼性を必要とする設備や機器などに用いられる事を目的として、設計及び製造されておりません。

医療、航空宇宙、原子力、輸送などの設備や機器、システムなどに本製品を使用され、本製品の故障により、人身や火災事故、社会的な損害などが生じても、弊社では責任を負いかねます。お客様ご自身にて対策を期されるようご注意ください。

特徵

本製品は、フラッシュメモリ内蔵のルネサス エレクトロニクス製 RA8E1/RA8M1(QFP-144 ピン)マイコン搭載ボードです。

ボード上に、ほぼ全てのマイコン端子を拡張 I/O 端子に引き出した、汎用的に使用できる評価ボードとなっています。

24MHz のメインクロックと、32.768kHz のサブクロック発振子を搭載しています。

USB-Host(USB-A), USB-function(USB-miniB)コネクタ搭載。

CAN-FD コネクタ搭載。(2ch, ボード上に CAN トランシーバ IC 搭載)

RTC バッテリバックアップ電池ホルダ搭載。

E2 エミュレータ(E2 エミュレータ付属の 14P 変換コネクタ経由での接続)、

E2 エミュレータ Lite (本体付属の 14P ケーブルでの接続)に対応。

(※E2 エミュレータ、もしくは E2 エミュレータ Lite をお持ちであれば、別売のケーブル不要でデバッガ接続が可能です。)

オプションの Ethernet ボード接続可能。

※コア電源の供給方法は DC-DC モードとなります(外部からは 5V 電源(1種)を印加)。

※OSPI フラッシュメモリは非搭載です。マイコン内蔵 ROM(RA8E1:1MB, RA8M1:2MB)の範囲内で使用するアプリケーションのデバッグ等に使用可能です。

概要

- RA8E1/RA8M1(QFP-144ピン)搭載
- エミュレータインタフェース(14P)(E2/E2Lite 向け)搭載
- エミュレータインタフェース(1.27mm ピッチ 20P)(E2/E2Lite 向け) [オプション](*1)
- USB full-speed Host(USB-A)コネクタ搭載
- USB full-speed function(USB-type-C)コネクタ搭載
- CAN-FD インタフェース(4P) CAN トランシーバ IC 実装(2ch)
- リセットスイッチ搭載
- · 24MHz 水晶振動子搭載
- 32.768kHz サブクロック搭載
- ・ リアルタイムクロックバッテリバックアップ電池ホルダ搭載

(*1)HSBRA8E1F144 は非搭載、HSBRA8E1F144-20P は搭載となります HSBRA8M1F144 は非搭載、HSBRA8M1F144-20P は搭載となります

製品内容

本製品は、下記の品が同梱されております。ご使用前に必ず内容物をご確認ください。

・マイコンボード	1 枚
·DC 電源ケーブル	1 本
·4P CAN 通信ケーブル	2 本
·回路図	1 部

1. 仕様

1.1. 仕様概要

マイコン ボード型名	HSBRA8E1F144 HSBRA8E1F144-20P	HSBRA8M1F144 HSBRA8M1F144-20P			
	RA8E1 グループ (144ピン QFP)	RA8M1 グループ (144ピン QFP)			
マイコン	マイコンの詳細は「表 1-1 搭載マイコン」及びリアマニュアルをご参照ください。	レネサス エレクトロニクス当該マイコンハードウェ			
クロック	内部最大 360MHz (実装水晶振動子 入力周波数:24MHz)	内部最大 400MHz (実装水晶振動子 入力周波数:24MHz)			
エミュレータ	エミュレータインタフェース J4 14P コネクタ実装済 HSBRA8E1F144/HSBRA8M1F144: (J5 1.27mm ピッチ 20P コネクタ <u>未実装</u>) HSBRA8E1F144-20P/HSBRA8M1F144-20P: (J5 1.27mm ピッチ 20Pコネクタ実装済)				
拡張 I/O	50PIN×2個 30PIN×1個 (J1~J3 コネクタ未実装 MIL 規格準拠)				
ボード電源電圧	5V				
消費電流 53mA		56mA			
実測値[参考]	(5V 印加、出荷時デモプログラム動作時での実測値、拡張 I/O は全てオープン)				
ボード寸法	90.0 × 70.0 [mm] 突起部含まず				

本ボードの実装コネクタについては「表 1-2 コネクタと適合コネクタ」をご参照ください。 その他の主な実装部品については「表 1-3 その他主な実装部品」をご参照ください。

本ボードには「表 1-1 搭載マイコン」のマイコンが搭載されています。必ず搭載マイコンの記載型名をご確認ください。

表 1-1a 搭載マイコン[HSBRA8E1F144(-20P)]

搭載マイコン型名 (コア)	Code Flash	RAM	Data Flash	動作周波数	マイコン電圧	パッケージ
R7FA8E1AFDCFB (Cortex-M85)	1MB	544KB	12KB	360MHz	1.68~3.6V	PLQP0144KA-B (*1)

表 1-1b 搭載マイコン[HSBRA8M1F144(-20P)]

搭載マイコン型名 (コア)	Code Flash	RAM	Data Flash	動作周波数	マイコン電圧	パッケージ
R7FA8M1AHECFB (Cortex-M85)	2MB	1MB	12KB	400MHz	1.68~3.6V	PLQP0144KA-B (*1)

(*1)パッケージは RENESAS Code 表記 JEITA 表記では、 P-LFQFP144-20x20-0.50

表 1-2 コネクタと適合コネクタ

	コネクタ	実装コネクタ型名	メーカ	極 数	適合コネクタ	メーカ	
J1	拡張 I/O インタフェース (未実装)	-	-	50			
J2	拡張 I/O インタフェース (未実装)	-	1	50			
J3	拡張 I/O インタフェース (未実装)	-	ı	30			
		BH-14SG	Useconn				
		H310-014P	Conser			OKI 電線、または準拠品	
J4	エミュレータインタフェース	XG4C-1431	OMRON	14	FL14A2FO 準拠		
		HIF3FC-14PA- 2.54DSA(71)	HIROSE				
J5	エミュレータインタフェース	未実装	-	20			
33	[オプション](*1)	FTSH-110-01- L-DV-K	Samtec	20	0.127 ピッチコネクタ		
	USB-FS function	USB4105-GF-A	GCT		USB シリーズ		
J6	(USB-type-C)	5077CR-16- SMC2-BK-TR	Neltron	16	type-C プラグ	USB 規格準拠品	
J7	USB-FS Host (USB-A)	292303-1	Tyco Electronics	4	USB シリーズ A プラグ	USB 規格準拠品	
J8	CAN-FD0 インタフェース	B4B-XH-A	JST	4	XHP-4	JST	
J9	CAN-FD1 インタフェース	B4B-XH-A	JST	4	XHP-4	JST	
J10	DC 電源	B2B-XH-A	JST	2	XHP-2	JST	

※コネクタに関しては、表に記載のいずれか、または互換品とする場合があります J4 エミュレータインタフェースは、ルネサスエレクトロニクス製 E2/E2Lite 向け。

(*1)J5 は HSBRA8E1F144/HSBRA8M1F144 では未実装、HSBRA8E1F144-20P/HSBRA8M1F144-20P では実装となります。

表 1-3 その他主な実装部品

部品番号	部品	型名	メーカ	備考
X1	17K - 2. 15: m) - L	HC-49/S3 24MHz HUSG-24.000-20	九州電通 Mercury Electronics	メインクロック(24MHz)
X2	水晶振動子	NC-26 VT-200-F	九州電通 セイコーインスツル	サブクロック(32.768kHz)
U3	ITICR 常治 スイッチ	MIC2019A BD2242G	MICREL ROHM	
U4, U5	CAN トランシーバ	TJA1462AT	NXP	8Mbps(max)
B1	電池ホルダ	HU1220	タカチ電機工業	CR1220 用

※主な実装部品に関しては、表に記載のいずれか、または互換品とする場合があります

1.2. ボード配置図

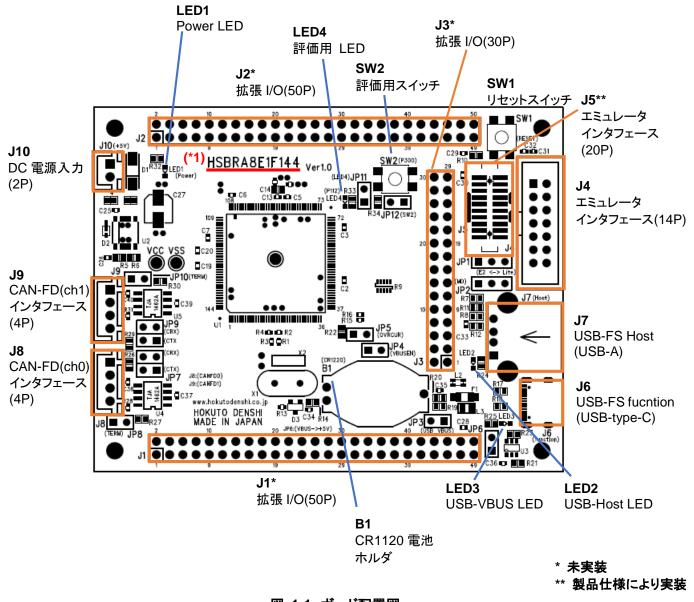
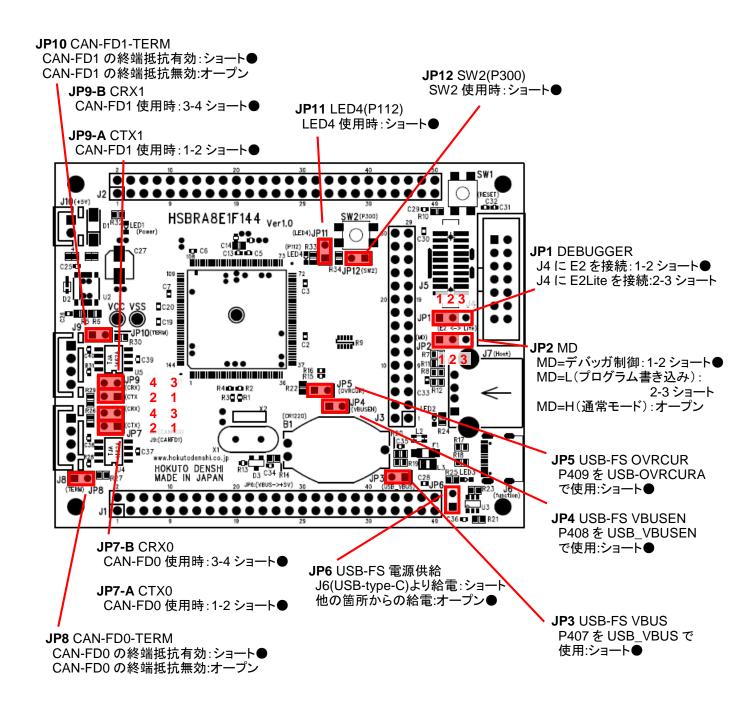


図 1-1 ボード配置図


図 1-1 にボード配置図を示します。

J5 は HSBRA8E1F144-20P/HSBRA8M1F144-20P で実装となります

(*1)Ver1.0 基板では、ボードシルク記載は「HSBRA8E1F144」となりますが、製品仕様によっては RA8M1 のマイコンが搭載となります。

1.3. ボード配置図(ジャンパ)

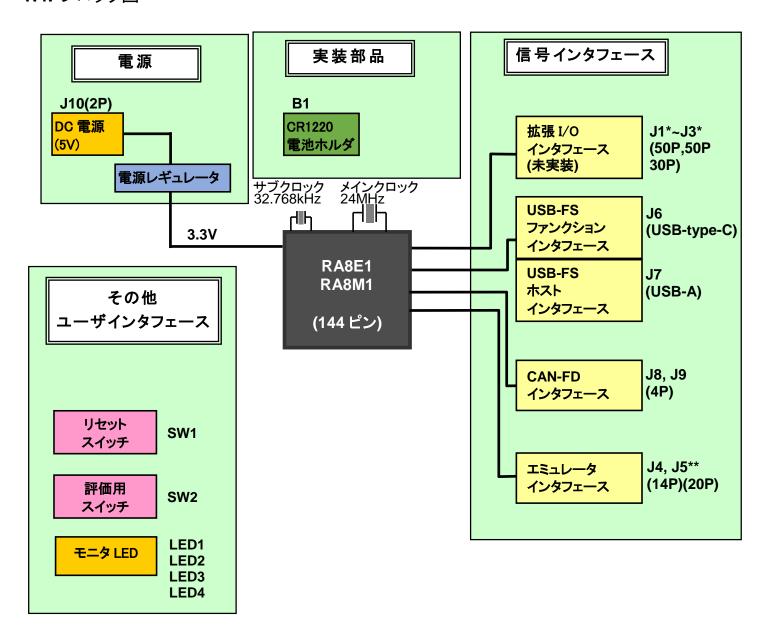

●:出荷時設定 : 出荷時ショート

図 1-2 ボード配置図(ジャンパ)

図 1-2 にジャンパ位置を表したボード配置図を示します。

1.4. ブロック図

* 未実装, **製品仕様により実装

図 1-3 ブロック図

図 1-3 に全体のブロック図を示します。

2. 詳細

2.1. 電源(J10)

J10 DC 電源コネクタから電源供給してください(5V)。

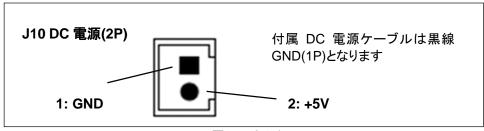


図 2-1 DC 電源コネクタ

電源の極性及び過電圧には十分にご注意下さい

- ・ボードに電源を供給する場合は、複数個所からの電源供給を行わないで下さい。製品の破損、故障の原因となります。
- ・極性を誤ったり、規定以上の電圧がかかると、製品の破損、故障、発煙、火災の原因となります。
- ・ボード破損を避けるために、電圧を印加する場合には 5V±0.5V の範囲になるようにご注意下さい。

電源供給のイメージを図2-2に示します。

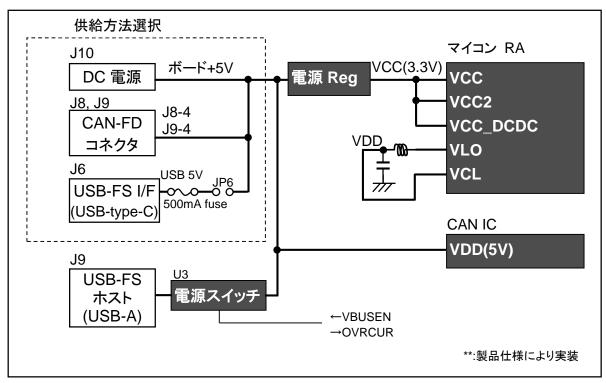


図 2-2 電源供給方法イメージ図

J10 電源コネクタ、J8, J9 の CAN-FD コネクタ、もしくは J6, USB-type-C コネクタからの給電が可能です。

※複数個所から電源が印加される事の無い様に設定してください

マイコンの VDD 供給は DC-DC モードとなります。

USBコネクタからの給電の場合は、ポリヒューズ(自動復帰型ヒューズ)経由での給電となります。500mA以上の給電能力のあるアダプタを使用した場合でも、電流供給は500mAに制限されます。

USB 電源選択ジャンパ

No	接続	設定	備考
JP6	オープン●	J6 以外から電源を印加する	
JFO	ショート	J6 から電源を印加する	

●:出荷時設定

※電源は、いずれか1箇所から印加されるように設定してください

2.2. 信号インタフェース

信号インタフェースの電圧レベルご注意ください。

⚠注意

入力信号の振幅がマイコン VCC を超えないようにご注意下さい。

規定以上の振幅の信号が入力された場合、永久破損の原因となります。 ※詳細はマイコンのハードウェアマニュアルを参照願います。 (マイコンの一部の信号ピンはトレラント入力となっています)

⚠注意

1 つの信号線に複数のデバイスが出力することのないようにしてください。

マイコン、拡張 I/O 等で、信号出力が衝突する事は、ボード破壊の原因となりますのでご注意ください。

2.2.1. 拡張 I/O インタフェース(J1~J3)

本ボードには J1~J3 に MIL 規格準拠 2.54mm ピッチの拡張 I/O インタフェースを用意しておりますが、コネクタは 未実装となっております。MIL 規格準拠 2.54mm ピッチのコネクタ、またはピンヘッダを用途に合せて別途用意してご 使用ください。

ご注意:各端子の特性をお調べの上、お客様の責任の下でご使用ください。

本インタフェースの信号表については、下記の表 2-1~2-3 をご参照ください。

表 2-1 拡張 I/O インタフェース信号表 (J1)

No	マイコン ピン番号	信号名	No	マイコン ピン番号	信号名
1	127	P010	2	128	P009
3	129	P008	4	130	P007
5	131	P006	6	132	P005
7	133	P004	8	134	P003
9	135	P002	10	136	P001
11	137	P000	12	140	P806
13	141	P805	14	142	P513
15	143	P512/CTX1	16	144	P511/CRX1
17	1	P400	18	2	P401/CTX0
19	3	P402/CRX0	20	4	P403
21	5	P404	22	6	P405
23	7	P406	24	8	P700
25	9	P701	26	10	P702
27	11	P703	28	12	P704
29	13	P705	30	14	VBATT
31	-	(NC)	32	22	P713
33	23	P712	34	24	P711
35	25	P710	36	26	P709
37	27	P708	38	28	P415
39	29	P414	40	30	P413
41	31	P412	42	32	P411
43	33	P410	44	34	P409/USB_OVRCURA-DS
45	35	P408/USB_VBUSEN	46	36	P407/USB_VBUS
47	-	VCC	48	-	VCC
49	-	VSS	50	-	VSS

*は負論理です。(NC)は未接続です。

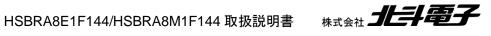


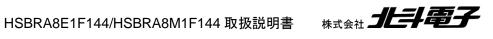
表 2-2 拡張 I/O インタフェース信号表 (J2)

	<u> </u>								
No	マイコン ピン番号	信号名	No	マイコン ピン番号	信号名				
1	126	VREFH0(*1)	2	125	VREFL0(*2)				
3	124	AVSS0(*2)	4	124	AVSS0(*2)				
5	123	AVCC0(*1)	6	123	AVCC0(*1)				
7	122	VREFH(*1)	8	121	VREFL(*2)				
9	-	(NC)	10	120	P014				
11	119	P015	12	115	P809				
13	114	P808	14	113	P804				
15	112	P803	16	111	P802				
17	110	P801	18	109	P800				
19	108	P100	20	105	P101				
21	104	P102	22	103	P103				
23	102	P104	24	101	P105				
25	100	P106	26	99	P107				
27	98	P600	28	97	P601				
29	96	P602	30	95	P603				
31	94	P604	32	93	P605				
33	84	P614	34	83	P613				
35	82	P612	36	81	P611				
37	80	P610	38	77	P609				
39	76	P115	40	75	P114				
41	74	P113	42	73	P112				
43	72	P300	44	71	P301				
45	70	P302	46	69	P303				
47	-	VCC	48	-	VCC				
49	-	VSS	50	-	VSS				

*は負論理です。(NC)は未接続です。

(*1)出荷時は VCC に接続されています

(*2)出荷時は VSS に接続されています


表 2-3 拡張 I/O インタフェース信号表 (J3)

No	マイコン ピン番号	信号名	No	マイコン ピン番号	信号名
1	(38)(*1)	P815	2	(39)(*1)	P814
3	41	P206	4	42	P205
5	43	P204	6	44	P203
7	45	P202	8	46	P313
9	50	P211/TCK/SWCLK	10	51	P210/TMS/SWDIO
11	52	P209/TDO/TXD9	12	53	P208/TDI/RXD9
13	54	*RESET	14	55	P201/MD
15	56	P200/NMI	16	57	P905
17	58	P312	18	59	P311
19	60	P310	20	61	P309
21	62	P308/TCLK	22	63	P307/TDATA0
23	64	P306/TDATA1	24	65	P305/TDATA2
25	66	P304/TDATA3	26	-	(NC)
27	-	VCC	28	-	VCC
29	-	VSS	30	-	VSS

*は負論理です。(NC)は未接続です。

(*1)出荷時は未接続です

ボード裏面 R35, R36 にショート抵抗実装、またはパターン間ショートで接続可能 (出荷時は、P815/USB_DP, P816/USB_DM 端子は、USB-A, USB-typeC コネクタに接続されています)

2.2.1. エミュレータインタフェース(J4)

本ボードには J4 にエミュレータ向けの 2.54mm ピッチ 14P のインタフェースコネクタが搭載されています。
ルネサスエレクトロニクス製 E2 の 20-14P 変換コネクタ(E2 付属)を使用しての接続、及び E2Lite 付属の 14P ケーブルで接続する事が可能です。但し、使用するエミュレータにより、ジャンパの設定が必要です。
本インタフェースの信号表については、下記表 2-4 をご参照ください。

表 2-4 エミュレータインタフェース信号表 (J4)

No	マイコン ピン番号	信号名	No	マイコン ピン番号	信号名
1	50	P211/TCK/SWCLK	2	-	VSS
3	-	(NC)	4	-	(NC)
5	52	P209/TDO/TXD9	6	-	(NC)
7	(51)(*1)	P210/TMS/SWDIO	8	-	VCC
9	(51)(*2)	P210/TMS/SWDIO	10	-	(NC)
11	53	P208/TDI/RXD9	12	-	VSS
13	54	*RESET*	14	-	VSS

*は負論理です。(NC)は未接続です。

(*1)(*2)JP1 により接続が切り替わります

・エミュレータ選択ジャンパ

No	接続	設定	備考
	1-2 ショート●	E2 接続時の設定	(*2)14P コネクタの 9 番ピンが
ID4			SWDIO と接続されます
JP1	2-3 ショート	E2Lite 接続時の設定	(*1)14P コネクタの 7 番ピンが
			SWDIO と接続されます

●:出荷時設定

接続するエミュレータにより、JP1を切り替えて使用ください。

※E2, E2Lite を SCI ブートモードでプログラムの書き込みに使用する際は、JP1 の設定は不要です (RenesasFlashProgrammer での「2 wire UART」での書き込み)

2.2.2. 20P エミュレータインタフェース(J5)[オプション]

J5(1.27mm ピッチ 20P コネクタ)は、オプションとなります。

HSBRA8E1F144/HSBRA8M1F144 では、J5 は未実装。HSBRA8E1F144-20P/HSBRA8M1F144-20P では、J5 は実装となります。

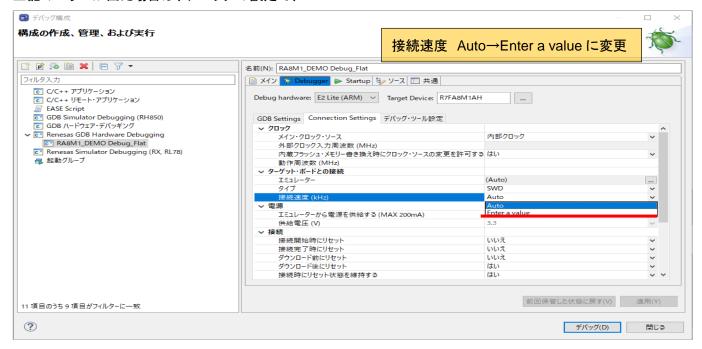
ルネサスエレクトロニクス製 E2 の 20P ケーブルで本製品に接続する場合、及び E2Lite でオプションの 20P ケーブルを使用して本製品に接続する場合は、J5 にコネクタが実装されている「-20P 仕様」のボードを選択ください。

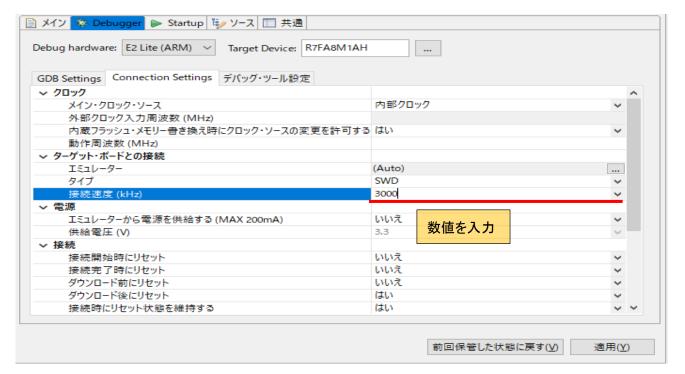
表 2-5 エミュレータインタフェース信号表 (J5)

No	マイコン ピン番号	信号名	No	マイコン ピン番号	信 号 名
1	-	VCC	2	51	P210/TMS/SWDIO
3	-	VSS	4	50	P211/TCK/SWCLK
5	-	VSS	6	52	P209/TDO/TXD9
7	-	(NC)	8	53	P208/TDI/RXD9
9	-	VSS	10	54	*RESET
11	-	(NC)	12	62	P308/TCLK
13	-	(NC)	14	63	P307/TDATA0
15	-	VSS	16	64	P306/TDATA1
17	-	VSS	18	65	P305/TDATA2
20	-	VSS	20	66	P304/TDATA3

^{*}は負論理です。(NC)は未接続です。

e2studio でのエミュレータ接続時


ターゲット接続開始


GDB の操作 'ターゲットに接続' は 'Error 0x0F000004: エミュレータファームから 想定外のエラーコードを受信しました。

' のエラーで失敗しました.

ターゲットデバッガから切断されました。

上記のエラーが出た場合は、デバッグの設定で、

接続速度の値を Auto から任意値に変更してください。

2.2.3. USB-FS インタフェース(J6, J7)

本ボードには、USB2.0 FullSpeed に対応した Host/function 対応の USB インタフェースが搭載されています。

- ※USB 機能使用時は、USB クロック(UCK)を 48MHz に設定する必要があります
- ・Host インタフェース: USB 電源制御 IC(過電流検出機能付き)搭載

表 2-6 USB function インタフェース(USB-type-C)信号表 (J6)

No	マイコン ピン番号	信号名	No	マイコン ピン番号	信号名
A1	-	VSS	B12	-	VSS
A4	-	VBUS(function) (*1)	B9	-	VBUS(function) (*1)
A5	-	CC1 (*2)	B8	-	(NC)
A6	39	P814/USB_DP	B7	38	P815/USB_DM
A7	38	P815/USB_DM	B6	39	P814/USB_DP
A8	-	(NC)	B5	-	CC2 (*2)
A9	-	VBUS(function) (*1)	B4	-	VBUS(function) (*1)
A12	-	VSS	B1	-	VSS

- (*1) JP6 ショート時 VBUS をボード+5V に接続
- (*2) 51kΩ対地抵抗に接続

表 2-7 USB Host インタフェース(USB-A)信号表 (J7)

No	マイコン ピン番号	信号名	備考
1	-	VBUS(Host)	
2	38	P815/USB_DM	
3	39	P814/USB_DP	
4	-	VSS	

*は負論理です。(NC)は未接続です。

·USB 関連端子

ポート名	マイコン ピン番号	機能	備考
P409	34	Host インタフェースの過電流検出(USB_OVRCURA-DS)	過電流検出時 L
P408	35	Host インタフェースのアタッチ制御(USB_VBUSEN)	Hで電源供給
P407	36	function インタフェースの VBUS 検出(USB_VBUS)	

※P409, P407 は入力ピンとして設定、P408 は出力ピンとして設定願いますP408=H 制御で、Host インタフェースの VBUS(J7, USB-A コネクタ VBUS(Host))が供給されます

•USB 関連 LED

LED	信号名	備考
LED2	VBUS(Host)	Host VBUS 供給で点灯
LED3	VBUS(function)	J6(USB-type-C)からの電源印加で点灯

・USB 関連ジャンパ

No	接続	設定	備考
JP3	ショート●	P407/USB_VBUS を J6:VBUS と接続	
JF3	オープン	P407 を VBUS から切り離す	

No	接続	設定	備考
	ショート●	P408/USB_VBUSEN を Host の電源	P408/USB_VBUSEN=H 制御時
l ID4		(VBUS)供給制御に使用	USB デバイスに+5V を供給
JP4	オープン	P408 を USB の電源制御 IC から切り	Host の VBUS には電源供給を
		離す	行わない

No	接続	設定	備考
	ショート●	P409/USB_OVRCURA-DS に USB 電	当該ノードはプルアップ(Host の
JP5		源制御 IC の過電流検出信号を接続	過電流検出時 L)
JF3	オープン	P409 を USB 電源制御 IC から切り離	
		す	

●:出荷時設定

※USB ブートモードでプログラムの書き込みを行う際は、JP3 をショートの状態とする必要があります

2.2.4. CAN-FD0 インタフェース(J8)

本ボードには、CAN-FD インターフェースが 2ch 搭載されています。

CAN-FD インターフェースを使用する際は、マイコンの CAN の信号(CTX0, CRX0)と CAN トランシーバ IC をつなぐ「CAN 接続」ジャンパ(JP7)を、ショート(ジャンパを挿した状態)にしてください。また、本ボード上で CAN-FD インタフェースの終端抵抗を有効にしたいときは、「終端抵抗」ジャンパを、ショートにしてください。

·CAN-FD0 インタフェース

表 2-8 CAN-FD0 インタフェース信号表 (J8)

No	信号名	備考
1	GND	
2	CANL	CAN トランシーバ IC を介して
3	CANH	マイコン CAN0(P401/CTX0, P402/CRX0)に接続
4	+5V	

表 2-9 CAN-FD0 インタフェース接続

CANトランシーバ IC	ジャンパ	マイコン	備考
TXD(1)	JP7-A	P401/CTX0(2)	
RXD(4)	JP7-B	P402/CRX0(3)	
STB(8)	R28	-	出荷時 R28=ショートで CAN トランシーバ 動作設定(*1)

()内はピン番号を表す

(*1)CAN トランシーバ IC をスタンバイ状態とする場合、R28 のショートパターンをカットしてください

·CAN-FD0 ジャンパ

JP7: CAN TX, RX 接続, JP8: 終端抵抗

No	接続	設定	備考
	1-2 ショート●	CAN-FD0 を使用	
JP7-A	オープン	P401/CTX0 ポートを CAN トランシーバ IC から切り離す	

No	接続	設定	備考
	3-4 ショート●	CAN-FD0 を使用	
JP7-B	オープン	P402/CRX0 ポートを CAN トランシーバ IC から	
		切り離す	

No	接続	設定	備考
JP8	ショート●	CAN-FD0 の終端抵抗を有効化	
JFO	オープン	CAN-FD0 の終端抵抗を無効化	

●:出荷時設定

2.2.5. CAN-FD1 インタフェース(J9)

・CAN-FD1 インタフェース

表 2-10 CAN-FD1 インタフェース信号表 (J9)

No	信号名	備考
1	GND	
2	CANL	CAN トランシーバ IC を介して
3	CANH	マイコン CAN1(P512/CTX1, P511/CRX1)に接続
4	+5V	

表 2-11 CAN-FD1 インタフェース接続

CANトランシーバ IC	ジャンパ	マイコン	備考
TXD(1)	JP9-A	P512/CTX1(143)	
RXD(4)	JP9-B	P511/CRX1(144)	
STB(8)	R31	-	出荷時 R31=ショートで CAN トランシーバ 動作設定(*1)

()内はピン番号を表す

(*1)CAN トランシーバ IC をスタンバイ状態とする場合、R31 のショートパターンをカットしてください

·CAN-FD1 ジャンパ

JP9: CAN TX, RX 接続, JP10: 終端抵抗

No	接続	設定	備考
	1-2 ショート●	CAN-FD1 を使用	
JP9-A	オープン	P512/CTX1 ポートを CAN トランシーバ IC から	
		切り離す	

No	接続	設定	備考
	3-4 ショート●	CAN-FD1 を使用	
JP9-B	オープン	P511/CRX1 ポートを CAN トランシーバ IC から 切り離す	

No	接続	設定	備考
ID40	ショート●	CAN-FD1 の終端抵抗を有効化	
JP10	オープン	CAN-FD1 の終端抵抗を無効化	

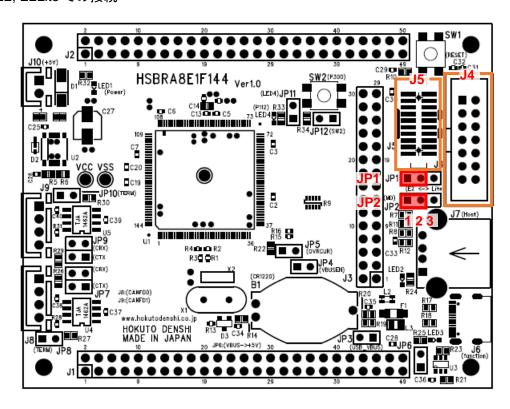
●:出荷時設定

2.3. 動作モード設定ジャンパ

·MD

No	接続	設定	備考
	1-2 ショート●	デバッガにより動作モードを制御	MD=TCK/SWCLK(P211)
JP2	2-3 ショート	ブートモード設定	MD=L
	オープン	通常動作モード	MD=H

●:出荷時設定

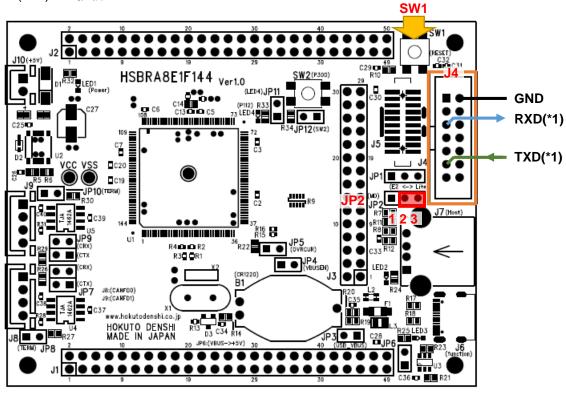

・動作モード設定

動作モード	JP2 MD	備考
シングルチップモード	1-2 ショート	P211 と MD(P201)は接続されます
ブートモード	2-3 ショート (MD=L)	SCI ブートモード、または USB ブートモード
シングルチップモード	オープン (MD=H)	P211 と MD(P201)は切り離されます

ユーザプログラム実行時は、JP2を1-2ショートまたは、オープンに設定してください。

ーブートモードでプログラムの書き込みを行う場合ー

•E2, E2Lite での接続

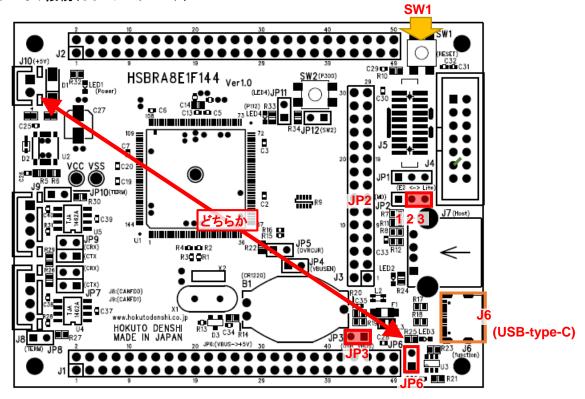


接続条件	JP1	JP2	備考
J5 に E2 もしくは E2Lite を接続	任意	1-2 ショート	J5 はオプション
J4 に E2 もしくは E2Lite を接続	任意	1-2 ショート または 2-3 ショート	2wire-UART 接続の場合
J4 に E2 を接続	1-2 ショート	1-2 ショート	SWD 接続の場合
J4 に E2Lite を接続	2-3 ショート	1-2 ショート	SWD 接続の場合

・UART(SCI)での接続(SCI ブートモード)

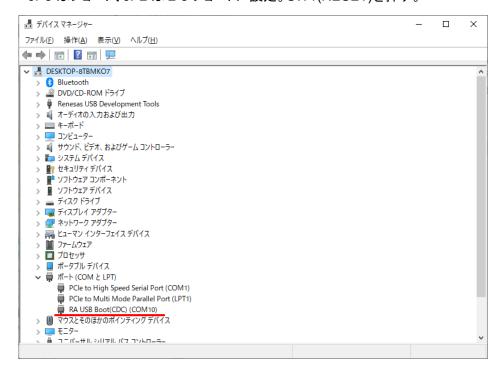
P208/RXD9, P209/TXD9 に、0-3.3V で送受信可能な USB-Serial 変換機器等を接続してください。当社製品ですと、USB-ADAPTER-RX14を J4 に接続して使用可能です。

JP2 は、2-3 ショートに設定してください。RenesasFlashProgrammer を使用する場合、操作の度に(接続後、書き込み前のタイミング)SW1(RESET)を押してください。


接続条件	JP2	備考
J4 に USB-ADAPTER-RX14 等(*2)を接続	2-3 ショート	2wire-UART での接続

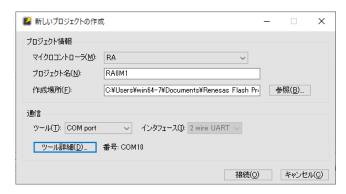
(*1)接続先基準での信号名です

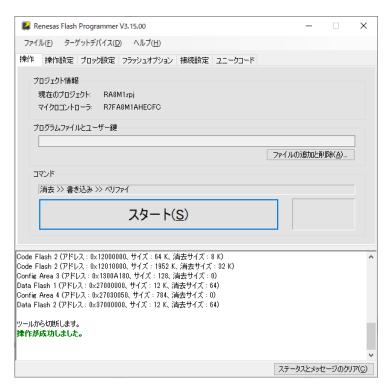
(*2)USB-ADAPTER-RX14(当社製品)を使用する場合は、USB-ADAPTER-RX14 上のスイッチを WRITE 側に設定する事で、JP2 の設定は不要です



・USB での接続(USB ブートモード)

USB-type-C ケーブル(別売)で、J6(USB-type-C コネクタ)と PC を接続。J10 から電源を供給する場合は、JP6 はオープン。J6(USB-type-C)コネクタから電源を供給する場合は、JP6 をショートに設定してください。JP6 をショートに設定する場合は、J10 他から電源を供給しないでください。


JP3 はショート、JP2 は 2-3 ショートに設定。SW1(RESET)を押す。


PC のデバイスマネージャからは、「RA USB Boot(CDC)」デバイスとして見えますので、この COM 番号で RenesasFlashProgrammer で接続してください。

(デバイスが見えない場合は、RenesasFlashProgrammer などのルネサスエレクトロニクス社のツールをインストールしてください。その際にデバイスドライバがインストールされます。※上記では COM10 として見えていますが、COMポート番号は環境により異なります。)

ツール Com port を選択

ツール詳細 (この例では)COM10 を選択

USB ケーブルがあれば、上記の様に Renesas Flash Programmer での接続が可能ですので、プログラムの書き込みやフラッシュオプションの設定等を行う事が出来ます。(接続後に、書込み等の別な操作を行う場合は、一度 SW1 を押してください。)

接続条件	JP2	JP3	備考
J6 に USB-type-C ケーブルで PC と接続	2-3 ショート	ショート	2wire-UART での接続

2.4. ユーザインタフェース

2.4.1. リセットスイッチ(SW1)

本ボードはリセットスイッチ(SW1)を搭載しており、スイッチを押すことにより、マイコンをリセット可能となっております。

表 2-12 リセットスイッチ信号表 (SW1)

スイッチ	マイコン ピン番号	信号名	備考
SW1	54	*RESET	リセット

*は負論理です。

2.4.2. 評価用スイッチ(SW2)

本ボードは評価用スイッチ(SW2)を搭載しています。

表 2-13 評価用スイッチ信号表 (SW2)

スイッチ	マイコン ピン番号	ジャンパ	信号名	備考
SW2	72	JP12	P300/IRQ4	プルアップ、スイッチ押下時 L

SW2 使用時は、JP12 をショートに設定してください。

·SW2 接続用ジャンパ

No	接続	設定	備考
ID42	ショート●	P300/IRQ4 を SW2, プルアップ抵抗に接続	
JP12	オープン	P300/IRQ4とSW2, プルアップ抵抗を切り離し	

●:出荷時設定

2.4.3. 電源 LED(LED1)

本ボードは電源 LED(LED1)を搭載しています。

表 2-14 電源 LED 信号表 (LED1)

LED	マイコン ピン番号	ジャンパ	信号名	備考
LED1	-	ı	VCC	電源投入で点灯

2.4.4. 評価用 LED(LED4)

本ボードは評価用 LED(LED4)を搭載しています。

表 2-15 モニタ LED 信号表 (LED4)

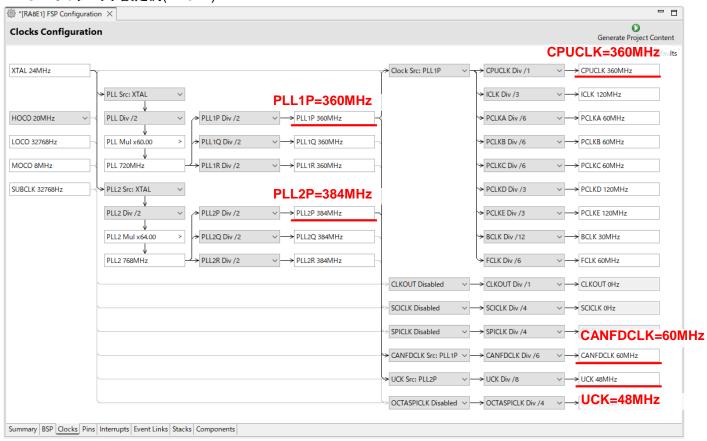
LED	マイコン ピン番号	ジャンパ	信号名	備考
LED2	73	JP11	P112	H 出力で点灯

LED4 使用時は、JP11 をショートに設定してください。

・LED4 接続用ジャンパ

No	接続	設定	備考
JP11	ショート●	P112 を LED4 に接続	
JFII	オープン	P112 と LED4 を切り離し	

●:出荷時設定


2.5. 搭載クロック

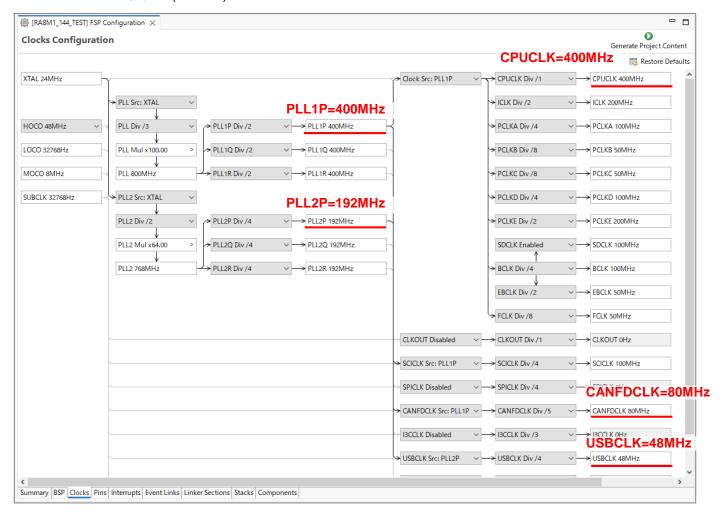
本ボードは、メインクロック 24MHz とサブクロック 32.768kHz を搭載しています。

・クロックソース

クロックソース	名称	周波数
メインクロック発振器	MOSC	24MHz(ボード搭載水晶振動子)
サブクロック発振器	SOSC	32.768kHz(ボード搭載水晶振動子)

ーFSP でのクロック設定例(RA8E1)ー

PLL, クロック設定は任意ですが、RA8E1 マイコンを最大動作周波数に設定する場合、PLL の入力分周比と逓倍率を調整して、CPUCLK=360MHz となる様に設定してください。


USB-FS インタフェース使用時は、UCK=48MHz となる様に設定してください。

CAN-FD インタフェース使用時は、CANFDCLK を有効化してください。(周波数は任意)

ーFSP でのクロック設定例(RA8M1)ー

PLL, クロック設定は任意ですが、RA8M1 マイコンを最大動作周波数に設定する場合、PLL の入力分周比と逓倍率を調整して、CPUCLK=400MHz となる様に設定してください。

USB-FS インタフェース使用時は、UCK=48MHz となる様に設定してください。

CAN-FD インタフェース使用時は、CANFDCLK を有効化してください。(周波数は任意)

2.6. 実装部品

2.6.1. 電池ホルダー(B1)

電池ホルダーは、マイコンの RTC(リアルタイムクロック)のバックアップ等に使用可能です。電池ホルダの+側電極は、ダイオードを介してマイコン VBATT に接続されており、電池挿入時はボード電源が印加されていない状態でもRTC の動作を継続します。

表 2-16 電池ホルダ信号表 (B1)

	No	マイコン ピン番号	信号名	電池型式	電圧
Ī	B1	14	VBATT	CR1220	3V(typ)

2.7. AVCC0, AVSS0, VREF 接続

本ボードは、出荷時 VCC-AVCCO, AVCC-VREFH, AVCC-VREFH0 VSS-AVSSO, AVSSO-VREFL, AVSSO-VREFL0 が接続されています。

上記接続は1点で接続されており、切り離す事が可能です。

図 2-3 AVCC0,AVSS0,VREF接続

AVCC0とVCCは、R105で接続されています。R105の中央部(図の赤色部分)をカッターナイフ等で切り離すと、AVCC0とVCCは分離されます。分離後は、J2-5,6からAVCC0に電位を印加してください。

同様に、AVSSOとVSS は、R106で接続されています。分離した場合は、J2-3,4 から AVSSO を印加してください。

VREFH, VREFL, VREFHO, VREFLO も同様に、ショート抵抗パターンでショートされています。

※パターンカットを行う場合は、φ1mm 程度のピンバイスで穴あけ(基板を貫通する穴を開ける必要はありません。銅箔パターンを削り取る浅い穴を開ける)を行う事が推奨です。(カッターナイフ等を使う場合に比べて周囲のパターンを傷つける事が少ないかと思います。)

3. 付録

3.1. ボード寸法図

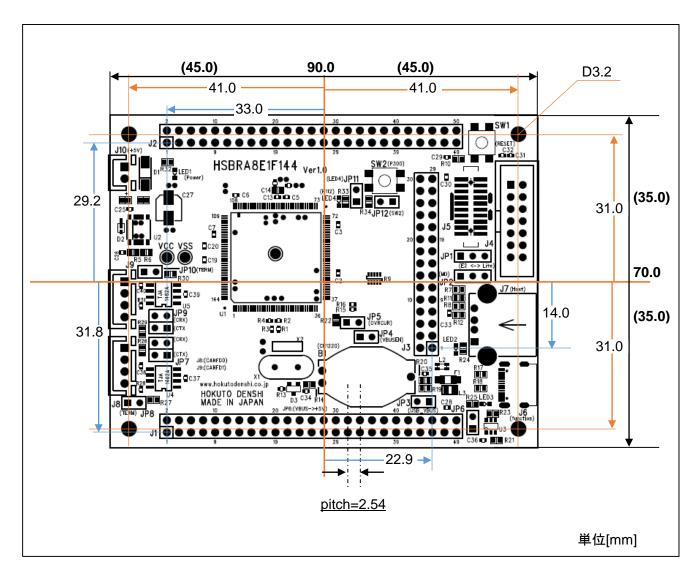


図 3-1 ボード寸法図

3.2. 初期設定

ボードは動作確認用として、デモプログラムを書き込んでおります。電源を供給するとボードの動作を確認できますので、内容については下記【デモプログラム内容】をご参照ください。

【デモプログラム内容】

電源を供給すると、LED4が点滅します。

SW2 を押している間は、LED4 は点灯となります。

(JP11, JP12 はショートに設定してください)

取扱説明書改定記録

バージョン	発行日	ページ	改定内容
REV.1.0.0.0	2025.1.21	_	初版発行
REV1.1.0.0	2025.11.7	P4-6,8 10,18,31	RA8M1 マイコン搭載ボードをラインナップに追加

お問合せ窓口

最新情報については弊社ホームページをご活用ください。 ご不明点は弊社サポート窓口までお問合せください。

株式会社 北井電子

〒060-0042 札幌市中央区大通西 16 丁目 3 番地 7

TEL 011-640-8800 FAX 011-640-8801

e-mail:support@hokutodenshi.co.jp (サポート用)、order@hokutodenshi.co.jp (ご注文用)

URL:https://www.hokutodenshi.co.jp

商標等の表記について

- 全ての商標及び登録商標はそれぞれの所有者に帰属します。
- · パーソナルコンピュータを PC と称します。

ルネサス エレクトロニクス RA8E1/RA8M1(QFP-144ピン)搭載 HSB シリーズマイコンボード

HSBRA8E1F144 取扱説明書 HSBRA8M1F144 取扱説明書

株式会社 北井電子

©2025 北斗電子 Printed in Japan 2025 年 11 月 7 日改訂 REV.1.1.0.0 (251107)